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Cylindrical phases of isotropic diblock copolymers as giant wormlike nematic liquid
crystals: Frank elasticity and Fréedericksz transitions
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Melts of unsymmetric diblock copolymers in the strong segregation limit can form a system
of cylindrical micelle worms. We describe this composite material as a giant nematic phase, and
calculate the Frank bend constant. As a nematic phase the giant worms are novel for three main
reasons. (1) The diameter is of the order of 100 A, i.e., about 100 times larger than ordinary nematic
phases. (2) The system is self-organized and its properties can be tailored by choosing the lengths
of the diblocks. (3) The system, despite its large size, exhibits a Fréedericksz transition at a critical
voltage V. comparable to that of monomeric nematic phases. We calculate how V. depends on the
microscopic diblock parameters. A macroscopic measurement of V. allows the measurement of one

of these parameters.
PACS number(s): 61.30.Gd, 62.20.Dc, 61.41.+e

Diblock copolymers are materials which consist of two
different polymer chains irreversibly tethered together at
one end. At high temperatures the two blocks are uni-
formly mixed. At low temperatures the chains are driven
to phase separate for enthalpic reasons. Irreversible teth-
ering makes macrophase separation impossible, and mi-
crophase separation into structures of the order of 100
A is the result. The mesophases formed can be lamel-
lae, ordered arrays of cylinders or spheres, and various
bicontinuous phases [1]. They are analogous to phases
formed in surfactant systems, and also to phases formed
by metallic alloys, but on a much larger spatial scale. In
this study we consider the case of melts of diblocks which
form cylinders in the strong segregation limit. Experi-
mentally these are readily observed and their formation
is understood theoretically [2]. These cylinders consist of
a nucleus formed by one of the blocks surrounded by a
corona of the other block. At low temperatures a sharp
interface separates the two. The chains in each region are
crowded and stretch away from the interface forming a
polymer brush [3]. The elasticity of ordered mesophases
is currently of much interest [4] as is the effect of electric
fields upon polymer phases [5,6], and nematic polymers in
general [7,8]. This study combines elements of all three.

The novel aspect introduced here is to describe the
cylinders as a giant nematic liquid crystal phase, with
the nematic director aligned along the cylinder axes. Ne-
matic liquids are simple ordered fluids and are interesting
from a number of perspectives. In particular, they can
undergo a second order distortional transition induced
by external electric or magnetic fields—the Fréedericksz
transition [9]. This transition is of great technological im-
portance in display devices and enables the measurement
of the Frank nematic elastic constants. Here we consider
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the bend geometry, where the cylinders are aligned per-
pendicular to two plates and a voltage is applied parallel
to the plates (Fig. 1). At low voltages the anchoring
and bend penalty favors alignment perpendicular to the
plates. The applied field, for a system of positive dielec-
tric anisotropy, €, = €| — €1 > 0, favors alignment paral-

lel to the plates. At a critical voltage V. = 71/ Kpend/€a
the electric field term causes a distortion and the direc-
tor gains a component parallel to the plates. Here Kpeng
is the Frank bend constant. We calculate Kyenq and in
so doing calculate the persistence length of the worms.
We find a critical voltage which depends weakly on the
degree of polymerization N, and should be of order N1/3
volts for randomly chosen polymers, i.e., of the same or-
der as the critical voltage for monomeric nematic phases.
It is thus readily observable in laboratory experiments
and should allow the measurement of some diblock prop-
erties. When it occurs in a crosslinked diblock it should
provide an interesting electromechanical effect.

We consider an isotropic diblock copolymer, consisting
of fN A monomers and (1 — f)N B monomers, where
N is the total degree of polymerization. Each block is
assumed to have the same monomer statistical segment
length b and the same monomer volume v. We first re-
mind the reader of the properties of the cylindrical phase
in the undistorted state [2]. The undistorted cylinders
consist of a nucleus of radius R,,, of A monomers and
a corona, of B monomers which extends to radius R..
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FIG. 1. (a) A cross section of the torus, showing the coor-
dinate system used. (b) A sketch of the distorted state of the
cylinders having undergone the Fréedericksz transition.
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By conservation of volume R2/R2 = 1/f. The free en-

ergy of a chain of N monomers is 3kTb~2 foN dn(dr/dn)?
where r(n) is the position of the nth monomer. The
free energy per unit length of any diblock micellar phase
consists of three terms: (1) the energy of the stretched
chains in the corona of the micelle; (2) a similar free
energy for the core or nucleus; and (3) the surface free
energy, so F = F. + F,, + F,. Here [2] F, = 2rvyR,,
F. = F,6lnf(12Inf — 27%)7Y(R,/Rno), and F, =
F,m%(2n%? — 121n f)"}(R,/Rno)3. The subscript 0 refers
to equilibrium quantities in the unbent state. In this
problem there is a constant energy scale per unit volume
27v/Rpo, which factors out of all the free energy expres-
sions. The system is specified by one variable f. There
is only one length scale R,q, the equilibrium radius of
the core, which in this paper always refers to the un-
bent state. By comparing the free energy of cylinders
with other geometries cylinders are predicted to form
when 0.12 < f < 0.28. Note that R,o itself depends
on f. This dependence can be expressed explicitly as
R3, = L34n%f?/(n% — 61n f), where L is the thickness
of the A region in a symmetric (f = 1/2) lamellar phase
with the same N.

To calculate the bend energy of a cylinder it is suffi-
cient to bend it into a torus of radius p (Fig. 1) [10]. Our
assumptions are a subset of those used in the unbent case
[2]. We assume that the chains move radially away from
the cylinder axis in straight lines. We calculate the sur-
face and nuclear energies exactly. The coronal energy
is calculated using the Alexander—de Gennes approxi-
mation [11]. The nucleus may distort, a feature which
significantly lowers the bending free energy. We use a
coordinate system centered on the cylinder axis (Fig. 1).
As a chain travels from the cylinder axis to the tip of the
corona it explores a certain volume which is a function
of the distance traveled, r. By elementary geometry the
volume taken up by the toroidal wedge between r and
r +dr and 0 and 0 + df is dV = 27 (p — r cos 0)rdfdr,
where 0 is defined in the figure. The volume is a func-
tion of 6, i.e., at # = 0 it is minimal while at § =
it is maximal. This implies that the equilibrium graft-
ing density and nuclear radius depend on 6. Know-
ing how dV depends on the coordinates we can cal-
culate the coronal and nuclear stretching terms. The
area perpendicular to the trajectory at a distance r is
S(r) = 2mw(p—rcos0)rdd = [(p/L)S2(r) — 2S3(r) cos 0]d6
where Sz(r) = 2nrL and S3(r) = 4nr? are the areas
seen in the cylindrical and spherical case. As noted by
Fredrickson [10], we can use Semenov’s free energy ex-
pressions [2] for spheres and cylinders to obtain the nu-
clear free energy exactly. Thus we have a free energy per
unit length of dF, = (2m) ™[ Fn2(r) — 38Fns(r) cos6]dd
where Fny = Fooé%,Fo3 = (4/5)F,,0£5 Here we have
defined a dimensionless measure of the nuclear cross sec-
tion, £(0) = R,(0)/Rno0, and a dimensionless curvature
B = Rpo/p.- The nuclear free energy per unit length is
then

Fn = Fn0<€4(1 - %ﬂg cos 0))9 (1)

where (u) = (2m)~! 02" dOu(6). For the coronal terms

D. R. M. WILLIAMS 49

there is no longer a linear dependence on S(r) and we
need to make an explicit calculation. The stretching

energy of n. chains is 3kTb2n, fa dr(dr/dn). Now

dr/dn = (d'r/ch)(ch/dn) where dV., is the volume ex-
plored per chain, i.e., dV, = dV/n. and dV./dn = v. We

thus have 2kTvb~2n? foR‘ dr1/S(r). By volume conser-
vation n.Nv = f:: drS(r), so
f2

ln%

X<“g(1‘§&ﬁ02m((g §§3>> ®

where 7 = R.(0)/R,(0) measures the coronal cross sec-
tion, and ¢ = cosf. The remaining term in the free

energy is the interfacial term
271/2
2, (%
— . 3
s+(w)] > 3)

There are two further equations, the first is the relation
between the nuclear radius and the coronal radius, which
is obtained by calculating the volume in a toroidal wedge
of size df

F.=Fy

F, = F,0<(1 — B€ cosb)

2 2
n? — E(COS 0)B¢n® = (1/f) (1 - 5(cos0)ﬁ£) . (4
The second gives the volume per unit length

V=nR2f 131 - 2 5B€ cosb)). (5)

Equations (1)—(5) are sufficient to solve the problem.
Note that for an unbent cylinder we have 8 = 0, n =
f~Y/2, and ¢ = 1, and all the free energies reduce to
their equilbrium values.

We need to calculate the change in free energy per
unit volume (F,, + F, + F,)V 1. In bending the cylinder
we allow the cross section to change, so we write £(6) =
1+4B¢(6). The free energies and volume per unit length in
the bent case are F./F.o = 1+48(e)+0%(h+g{ce)+6(€?)),
Fo/Fno = 1+ 4B(e) + B(6(e?) — 2(ce)), F,/Fao =1+
B(e) +B%(5(¢*) =2(ce)), and V/Vo = 1+26(e) +6((¢*) -
2(ce)). The total change in free energy per unit volume
(Fe+ F, + F,)/V is thus

B%FyoVy  [(Feo/Fso)h + (% + 3€® + Eecosf)]. (6)
Here Vo = wR%,f~!, h(f) = (18flnf)"'(4flnf +
40f1/%—21f -19), g(f) = F (Iln f)~'[2-1n(f) -2 /3],
and E(f) = (Feo/Fs0)(2 +g) > 0 are all positive.

First consider the case where the nucleus is undis-
torted, so €(f) = 0. In this case there is only one term
in the free energy §F = F.oVy '3%h, which arises solely
from the corona, and is always positive. Now we al-
low the nucleus to distort. The second term in (6),

; 24 %ez + FEecos0), then comes into play. This is
exactly the action for a classical particle of displacement
€, with 0 interpreted as time. The particle moves in an
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inverted parabolic potential, plus a periodic force cos8.
Physically these terms arise as follows. The kinetic en-
ergy term €’ ? arises from the curvature dependence of the
surface tension (3). The potential o €2 causes resistance
to growth or shrinking of the radius, since we are bending
a cylinder which has the equilibrium radius. The term in
cos @ describes the angular coupling of the bend.

We now need to minimize (6) over all nuclear distor-
tions. The Euler-Lagrange equation for €(#) is the equa-
tion of motion for our fictitious particle, ¢/ = 3e+F cosé.
By inspection this has the solution €(f) = —(E/4) cosé.
The free energy change per unit volume upon bending
is then 6F = V; 'B%[Fooh(f) — 5 Fs0E?(f)]). Note that
by distorting the nucleus the bending energy is lowered,
by a significant factor, of about 40%. However, a plot of
OF shows it is always positive, i.e., the system is stable
against bending deformations.

The cross section of the cylinder in the distorted state
obeys the equation r(0)/Rpo = 1 — (E/4)B cos 6. We can
compare this to the equation for a circle with unit radius
and center (z = w,y = 0), r = 14w cos§ — Jw?sin’ 6, for
w K 1. To first order our distorted circle corresponds to
an outward displacement of the cylinder axis, away from
the axis of the torus, by %R,,O,BE. This displacement is of
course small compared with the imposed radius of curva-
ture p; the actual radius of curvature is g = p(1+ %,BZE).
The cross section is still approximately circular. How-
ever, the chains no longer have purely radial trajectories
with respect to this circle, and the nucleus is distorted.

When a section of an ordinary nematic fluid is bent
into a torus of radius p the free energy per unit volume is
%Kbend’nx (Vxn)|? = 20" Kpeng. This provides the re-
quired bend constant Kpena = (27) "1 f(Feoh— I—IGF,OEZ).
We note in passing that this calculation also gives us
the persistence length [12] of cylindrical diblock worms
in a homopolymer of large molecular weight. The re-
sult, I, = 4w (kT) " yR3y[Feo/Fsoh — 15 E?), can be much
larger than that for a single polymer chain [, ~ a, be-
cause of the N dependence of R,o ~ a(fN)?/3 [2]. The
ratio of I, to [, should be about (fN)?2, which can be
substantial. Indeed micrographs of such worms [13] show
this large persistence length. Here we have calculated the
bend constant in the regime where the worms are free to
grow or shrink in radius. If this freedom is removed, as
it would be at short times, the bending energy will be
slightly different. We have also done this calculation and
find no change to the term in 52.

The second ingredient in the Fréedericksz transition
is the dielectric anisotropy. The microphase separation
and geometric organization of the two blocks induces this
anisotropy. This has previously been used in the weak
segregation limit of lamellar systems for alignment pur-
poses [6]. The dielectric anisotropy of a system of cylin-
ders of dielectric constant ¢, embedded in a medium of
dielectric constant ¢,, is a nontrivial problem, first solved
by Lord Rayleigh [14]. The result for f < 1 is

€c 2A
ea=6||—€J_=€mf(E‘—_1“‘1_fA)a (7)

where A = (. — €m)/(€c + €m). For the diblock problem
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FA < 1,50 € = f(€m—€c)?/(€m+e€c). Giant diblock mi-
celles, unlike ordinary monomeric liquid crystals, exhibit
only positive dielectric anisotropy.

The analytical form for the critical voltage V. can be
found using our expressions for Kpenq and €,. The ex-

pression is cumbersome, but it can be well approximated
by

Ve = [vL(em + €c)/(€m — €)?]*/%(0.971 — 0.683f). (8)

To obtain an estimate of the voltage we set v = kT/a?,
€m + €c = €, and €, — €. = €9, where a ~ 1 & is a
monomer size and €p is the permittivity of free space.
Noting that L ~ aN?/3 we find V ~ N/3 volts. The
voltage depends weakly on the degree of polymerization
and will vary between about 1 V for short polymers up to
100 V for the longest polymers. It is thus readily acces-
sible in laboratory experiments and will allow measure-
ments of microscopic diblock properties such as surface
tension.

We have neglected several minor effects in this study
and we list two here. (1) We have studied the distor-
tion of a single cylinder. For a diblock in a homopolymer
melt this is an excellent approximation. For a melt of
diblocks each micelle is surrounded by six adjacent mi-
celles, which distort the cylindrical shape to that of a
hexagon. The corrections caused by this distortion have
been calculated recently [15] and have been shown to be
very small. This is essentially because they occur near
the tip of the corona, which has a low effective grafting
density and a low modulus [4]. (2) Giant micellar worms
can change their morphology and even break under the
influence of a strong enough field. This effect can be ne-
glected, since at the critical field the electrical energy per
unit volume is ~ Kpena/H?2, whereas the other energies
are of order Kpenda/R2,, where H is the plate separation.

We have calculated the bend constant for the worms.
For nematic phases there are two other elastic constants,
splay and twist. On dimensional grounds the twist con-
stant should be of the same form as the bend constant
Kiwist ~ YRnoG(f), where G is some well behaved func-
tion of f. The splay constant is more problematical. For
infinitely long polymers splay, infinite wavelength splay
is impossible because their are no chain ends [8]. For
giant worms, splay is possible, by breaking the worms.
In a spherically splayed geometry the area increases as
72 and hence the number of ends created per unit vol-
ume is ~ rdr/(r2dr) ~ r~!. The free energy per unit
volume is thus ur~!, where u is a constant. For classi-
cal nematic phases the splay free energy per unit volume
is Kyplayr~2. Thus the inifinite wavelength splay con-
stant for giant worms diverges. These elastic constants,
though important for some deformations, play no part
in the transition considered here [16]. We conclude by
noting an interesting effect which will occur if the di-
blocks are permanently crosslinked in the ordered phase.
The system then forms an ordered rubber in which the
distortion of the director is directly related to a displace-
ment of the cylinders. Such a rubber would show an
electromechanic effect, i.e., a relative displacement of the
two plates caused by the application of a field [17].
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